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We report a comparative study on pattern formation between the methods of cellular automata (CA) and
reaction-diffusion equations (RD) applying to a morphology of bacterial colony formation. To do so, we began
the study with setting an extremely simple model, which was designed to realize autocatalytic proliferation of
bacteria (denoted as X) fed with nutrition (N) and their inactive state (prespore state) P; due to starvation:
X+N—2X and X— P, respectively. It was found numerically that while the CA could successfully generate
rich patterns ranging from the circular fat structure to the viscous-finger-like complicated one, the naive RD
reproduced only the circular pattern but failed to give a finger structure. Augmenting the RD equations by
adding two physical factors, (i) a threshold effect in the dynamics of X+N— 2X (breaking the continuity limit
of RD) and (ii) internal noise with onset threshold (breaking the inherent symmetry of RD), we have found that
the viscous-finger-like realistic patterns are indeed recovered by thus modified RD. This highlights the impor-
tant difference between CA and RD, and at the same time, clarifies the necessary factors for the complicated

patterns to emerge in such a surprisingly simple model system.
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I. INTRODUCTION

Nonlinear growth in multiple agent systems such as those
in autocatalytic reactions is often associated with pattern for-
mation ubiquitously, ranging from the atomic scale phenom-
ena [1] to the morphology of living bodies [2]. Tt is quite
interesting to explore how those diverse patterns are gener-
ally ruled, and indeed a large amount of literature has already
been devoted to the related subjects [3-8].

Theoretical studies on nonlinear growth usually consist of
two stages: (1) model setting, in which the mechanism of
relevant dynamics is assumed and dominating components
and physical factors are specified. It is quite often that the
mechanism is represented in terms of a network of key reac-
tions (actions), with the Oregonator model [9] for the
Belousov-Zhabotinskii reaction being an illuminating ex-
ample. (2) Numerical realization or simulations as a test of
the assumed model and/or further analyses. The methods of
reaction-diffusion equations (RD) and the cellular automaton
(CA) are among the most widely used techniques. It is gen-
erally anticipated that theoretical results should not depend
much on the choice of the method of simulation, aside from
numerical efficiency, since they are designed to realize the
model as faithfully as possible. However, to the best of our
knowledge, there are few studies to examine whether this is
really the case.

The aim of the present paper is twofold. We first survey
an extremely simple autocatalytic proliferation model, Eqgs.
(la) and (1b) for the growth of bacterial colony patterns
[10-13] by means of CA, scanning the morphological dia-
gram of Bacillus subtilis created by Matsushita er al. [10],
which exhibits five different patterns depending on two ex-
perimental parameters: the initial nutritive concentration and
the substrate softness (the mobility of bacterium). Further-
more, using this model, we compare RD and CA placing a
focus on the formation of the viscous-finger-like pattern of
the colony. In so doing, we identify a qualitative difference
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between RD and CA. Moreover, it turns out that the differ-
ence manifests the important physical factors that bring
about the characteristic patterns of the bacterial colony.

Many studies of pattern formation made so far have used
RD, which are often based on a mean-field description such
as rate equations in chemical reaction systems. The greatest
advantage of this method is that mathematical techniques to
analyze the pattern formation and associated phenomena,
such as the linear stability analysis around the fixed points,
follow automatically. These analytical techniques are very
powerful indeed. CA, on the other hand, is also well estab-
lished as a simple and unique means in the study of nonlinear
dynamics, particularly for systems in which the nearest
neighbor interaction is predominant [14]. Besides, CA re-
quires only rules (procedures, algorithms) to describe the in-
teraction of neighboring elements, and therefore, one can ap-
ply CA to a complicated dynamics that may have no explicit
differential and/or integral equations, this situation being fre-
quently encountered in natural and social sciences.

An obvious difference between CA and RD is that RD has
a mathematically continuous limit in its solutions, while CA
can handle only discrete space-time coordinates. (We are dis-
cussing neither the finite difference approximation to differ-
ential equations nor the infinitesimal materialization of a
space-time unit in CA.) Depending on the size of a system
under study, discreteness or the resultant threshold effect on
dynamics is naturally installed in CA. Another very impor-
tant fact to be taken into account is that any symmetry that is
inherently involved in a given differential equation cannot be
broken within its own scheme without the help of external
perturbation, no matter how small it is. This is also the case
for the RD. Such an external perturbation (or fluctuation) is
quite often applied with the use of artificial noise so as to
break the intrinsic determinicity. On the other hand, CA dy-
namics is naturally driven by a stochastic (probabilistic) pro-
cedure. Recently, the importance of fluctuations has been
recognized in various phenomena [15-18]. For instance, an
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essential difference between macroscopic (having the con-
tinuum limit) and microscopic (finite particle systems) dy-
namics in reaction processes has been ascribed to the fact
that even a microscopic fluctuation can be comparable to the
main driving forces working on the microscopic composing
elements [19,20]. Therefore it is quite interesting to see
whether (and how) RD and CA can actually give different
results to a same system, provided that a tested system is
within their application range.

The paper is organized as follows. In Sec. II, we first
introduce the simple growth model mimicking the growth of
bacterial colonies, and briefly describe the methodological
details of the CA and the standard RD. Further details of the
CA are followed by the Appendix. Numerical results directly
given by these methods are compared in Sec. III. Section IV
is devoted to numerical analyses on how the essential differ-
ence between CA and RD has arisen. We actually show that
the augmented RD can reproduce the viscous-finger-like
complicated pattern. Finally, we conclude this compact paper
with some remarks in Sec. V.

II. AUTOCATALYTIC PROLIFERATION OF BACTERIAL
CELLS FED WITH NUTRITION AND NATURAL
DEATH: MODEL AND METHODS

A. Minimal model mimicking colony formation

We study the growth dynamics of an agent X caused by a
simple autocatalytic proliferation and natural death. X prolif-
erates by reacting with another agent N, and naturally dies by
the depletion of N (starvation). This model is represented as
follows:

X+N—2X, (1a)

Process (1a) A cell (X) takes an amount of nutrition (N),
which is prepared with an initial distribution, and proliferates
into two pieces by division. Process (1b) A cell (X) dies
naturally by starvation with a given rate. The inactive (or
dead) bodies (P;) are left unchanged as they are.

This growth dynamics is designed without respect to bio-
logically inherent and individual mechanisms [21]. Never-
theless, we here call X, N, and P,, respectively, cell, nutri-
tion, and dead (inactive) body. (In bacterial colony
formation, P, is actually in the prespore state [13].) In real-
ity, however, these agents can be regarded also as various
elements such as chemical reagents and other units of social
activity.

B. CA

We next outline the two numerical methods we use in this
study, namely, CA and RD. As a means to study the many-
particle dynamics of multiple components in general [23],
we choose the so-called coupled cellular automata (CCA)
[24], in which multiple CA’s are connected with each other.
Danielak et al. developed an extensive CCA in the study of
nonlinear interaction between catalytic CO oxidation on the
Pt surface and the restructuring of its surface state [25]. We
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also devised a CCA to represent nonlinear interactions
among aggregating particles on a flat surface in the study of
cluster formation on a substrate under spatiotemporal fluc-
tuation of temperature [26].

The CCA dynamics applied to the present scheme, Egs.
(1a) and (1b), consists of two CA’s (fields): one representing
the dynamics of X along with P; and the other describing the
time-dependent redistribution of N. With these fields, we run
the following three procedures (rules): (1) diffusion process
on each field (the inactive bodies P; do not move, though),
(2) reaction process by Eq. (1) through the communication of
the two fields for X and N, and (3) the coupling between
reactions and diffusion. The last procedure is necessary to
handle a situation in which X and/or N happen to have
chances of both diffusion and reaction.

The magnitude of diffusion of X represents its mobility,
which may also reflect the softness of the substrate, while
that of N determines the chance (rate) for X to be fed with.
These two diffusion processes on the individual CA fields are
regarded as independent stochastic processes, unless they re-
act with each other. The two CA’s may be performed on two
independent computer nodes and the reaction processes are
performed through periodic couplings (communication) be-
tween the two fields.

The ratio of time steps of these automata should be deter-
mined so as to represent the physical constants predeter-
mined such as those for the reaction rate and diffusions. Oth-
erwise, there is no absolute time unit in the CCA. Each CA
field realizes cellular dynamics on two dimensional triangu-
lar lattice coordinates, in which any single node has six near-
est neighbor nodes, except for those on the boundary. Below
we describe the basic CA rules in a rather precise fashion so
as to ensure the reproducibility of the present results. We
refer to the CCA simply as CA in the following.

1. Diffusion

The particles on each CA field move diffusively, except at
the timings of interaction between the two fields for reaction.
These diffusive motions are treated as a random walk in each
CA field. Each particle is allowed to move to one of its
nearest neighbor nodes or remains at the same node. Let p;
be a probability for a particle i to stay at the same node (0
<p,;<1). Since particles can diffuse in an isotropic manner,
the probability of moving to one of the nearest neighbor
nodes is (1—p;)/6 in the present coordinate system. Running
a random number in [0, 1), we determine the position to
which a particle should move.

2. Reaction

The reaction process is treated as an interaction between
the relevant CA fields for X and N. We regard the reaction of
Eq. (1a) as a stochastic process and transform the rate con-
stant k as a predetermined probability for particles to react in
a unit time.

Furthermore, we introduce two characteristic features of
CA rules that are difficult for the ordinary rate theory to
describe. The details of the algorithm for the reaction dynam-
ics are given in the Appendix.
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3. Coupling of reaction and diffusion

The diffusion processes for X and N on the individual
CA’s run independently with their own time intervals. They
are periodically forced to couple with each other for the re-
action in a certain time interval. These timings are fixed by
the following relations. Suppose that AtD,_ is a unit time
length for the diffusion process of a component i (actually X
or N). Also, let At be the unit time interval for the commu-
nication of two CA’s to be made to take account of the reac-
tion. Then the relative length for these timings is numerically
fixed by predetermining the ratio

_ A
- Atp,

(2)

Ti

We call this ratio 7; the diffusion frequency of the component
i.

The diffusion frequency 7; is correlated with the diffusion
constant D; of the component i in the present stochastic
model. Choose |Ag|=1 as a unit length between two nodes of
the CA fields, and Afz=1 as a unit time step of the reaction
process. Then, the diffusion constant D; is given in the fol-
lowing form:

D = (1-p)lAgf _ (1-p)m
' 4Atp, 4

, 3)

where 1-p; is the mobility of particles given above in the
description of the diffusion process. Equation (3) suggests
that the diffusion constant is proportional to (1-p;) and 7,
And thus the diffusion constant of each component can be
specified by explicitly choosing p; and 7;. (In the coupled
cellular automata, the diffusion constant is not treated as a
predetermined constant in contrast to the ordinary diffusion
equations. See Ref. [26] for a general discussion on the dy-
namical treatment of the diffusion constants.)

C. RD

We next describe the RD, which naively represent the rate
process of the model equations (1a) and (1b) and the diffu-
sion as well. They are

ox

P kyxn — kox + DyVx, (4a)
17
2 kyxn + DyVn, (4b)
ot
p;
L= kox, 4c
or 2X (4¢)

where x(z,1), n(z,1), and p,(z,t) are the spatiotemporal con-
centration of X, N, and P, respectively, in the two-
dimensional space z and time t. k; and k, are the rate con-
stants of the reaction processes (1a) and (1b), and Dy and Dy
are the diffusion constants of X and N, respectively. Since P,
is inactive and does not move, Eq. (4c) does not include the
diffusion term. To integrate these differential equations, we
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TABLE 1. System parameters chosen for the cellular
automata.
L 150 Radius of the system
Xy 50 Initial number density of X
PN 0.33 Probability for N to remain
Tx 1 Diffusion frequency of X
Ty 3 Diffusion frequency of N
r 0.85 Reaction probability in Eq. (1a)
ry 0.10 Reaction probability in Eq. (1b)

have used the Crank-Nicolson scheme [27] on a grid with a
proper mesh size Az and a time step Az. In the present paper,
we set k;=1.0, k,=0.1, and Dy=0.25 throughout. We call
Egs. (4a)—(4c) the standard RD to distinguish our augmented
RD to be presented later.

II1. DIFFERENT PATTERNS EMERGING
FROM CA AND RD

We apply the above CA and RD to the models (1a) and
(1b) to mimic the growth of a bacterial colony. As an initial
condition, a tiny circular spotlike colony of X is implanted
into a uniform field of N as a seed of its spatiotemporal
propagation. The initial concentration of N and the mobility
of the individual X are the critical parameters that dominate
the dynamics. We have scanned these quantities and other
parameters to find the patterns experimentally observed by
Matsushita et al. [10].

A. Cellular automaton

We first summarize the pattern formation realized by the
CA in scanning the two parameters, N (the initial number
density of N) and py [corresponding to the mobility of X, see
Eq. (3)]. Table T lists the system parameters for the present
CA. The reflecting boundary condition has been imposed on
the CA calculations.

Figure 1 shows the typical growth patterns arising from
the four selected values of N, and py. (Note that the timing
to pick the individual patterns is different.) They exhibit the
total distribution of X and P; without distinguishing them,
since the colonies contain both active and inactive (prespore)
bacteria and they are not seemingly discriminated from each
other. Comparing our numerical results with the experimen-
tal morphological diagram [10], we may judge that the
present CA has well reproduced the qualitative feature of the
colony patterns experimentally observed. On the other hand,
our simple calculations were not successful in reproducing
the concentric ring patterns observed by Matsushita er al.
[10,28]. (It is suggested that a particular mechanism that is
not contained in our CA rules should work to produce such a
concentric colony [29].)

To quantify the complexity of the colony geometry ob-
tained, we calculate the fractal dimension df of the patterns
by using a relation S~R§f, where R, is the radius from the
center of mass and S is the area of patterns [see Fig. 2(a)]. As
Ny (py) increases (decreases), d; approaches the space di-
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FIG. 1. (Color online) (Upper) Snapshots of the combined dis-
tribution of X and P, for selected values of Ny and py. Taken at (a)
t=730, (b) =490, (c) r=2830, and (d) 7=935. The color bar indi-
cates that the darker (red) part contains the more X and/or P, par-
ticles. (Lower) Bacterial colonies experimentally observed by Mat-
sushita and his co-workers (reproduced with permission).
Incubation time of each colony is about (a) a week, (b) half a day,
(c) a month, and (d) a day [28].

mension d=2. In addition, we measure the velocity of
growth of the front edge of the colony [Fig. 2(b)]. This figure
shows that the front velocity increases as N, (py) increases
(decreases). This result is not surprising and indeed is in
harmony with the growth rate of the bacterial colonies ex-
perimentally observed [10,28]. It is summarized that in the
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FIG. 2. (Color online) (a) Fractal dimension d; as a function of
Ny and py. d; approaches the space dimension d=2 as N, increases.
(b) The front velocity of the propagating colony. The velocity in-
creases, as N, increases or py decreases. (+) py=0.975 (low mo-
bility of X). (X) px=0.925 (high mobility).
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circumstances where the amount of N is less and X moves
slower (less frequent for a larger py), the colony grows like a
viscous finger with a lower fractal dimension and a smaller
growth rate. In such an unfavorable condition, X behaves as
though they attempt to elongate their colony boundary in
order to make it easier to ingest N. It is quite interesting that
such a typical pattern in the diffusion limited aggregation
(DLA) [30] can be commonly observed in the systems of
nonlinear proliferation. Also, it is rather surprising to see that
such an extremely simple mechanical model like Egs. (1a)
and (1b) could reproduce the complicated patterns without
respect to the details of biological reality.

B. Reaction-diffusion equations

We next examine the same model as above with the stan-
dard RD method. The Neumann boundary condition has
been imposed. Again, we have surveyed the possible patterns
by scanning the values of two parameters: n, (the initial con-
centration of N) and Dy (the diffusion constant of X).

Interestingly, however, the standard RD method did not
generate the complicated growth patterns in marked contrast
to the CA. It could generate only a qualitatively circular disk
for any values of ny and Dy within our examined range (fig-
ure not shown). This result suggests that in the mechanical
difference between the CA and the standard RD critical fac-
tors should exist in the formation of realistic and complicated
growth patterns like the viscous-finger-like shape. Thus it is
crucial to clarify what is responsible for creating the essential
difference between them.

IV. BASIC MECHANISMS GENERATING VISCOUS-
FINGER-LIKE ASYMMETRIC BRANCHING PATTERNS

We then analyze the “physical” mechanisms that are re-
sponsible for generating the viscous-finger-like fractal pat-
tern in the growth dynamics. Since the CA is already suc-
cessful in producing such complicated patterns, our analysis
is mainly aimed at the properties of the RD equations.

A. Threshold dynamics

As discussed in the Introduction, one of the obvious fac-
tors that differentiate the RD equation approach from CA is
the treatment of continuity with respect to the variables z and
t. Mathematically, any small change of the variables is ac-
ceptable in the RD equations as an action that may eventu-
ally result in a significant effect. Such an assumption (or
approximation) of continuity is often unphysical depending
on the scale of system size under study. In particular, many
physical systems are driven by the so-called threshold dy-
namics; an event can take place only when a variable ex-
cesses a threshold value, with the firing in neural systems
being a well-known example. In the present system also, it is
not difficult to imagine that the individual cells X can prolif-
erate only after a sufficient amount of nutrition N is con-
sumed. It is therefore natural to begin our analysis with the
threshold effect.

To the best of our knowledge, Kessler and Levine are
among the first who studied a threshold dynamics in the RD
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equation. In their study on a simplest proliferative reaction
A+B—2A, they assumed that this reaction does not occur if
the concentration of A is below a threshold value [19]. How-
ever, a clear branching pattern did not emerge in their
scheme, although they observed a front instability of the
growth patterns (the instability of the front end of the propa-
gating wave). Then, Golding et al. briefly reported in their
review paper that a branching pattern arose by adding a deg-
radative reaction A— C to the Kessler and Levine model
[31]. Moreover, they studied the effect of discreteness on
various models for patterning in bacterial colonies, and they
concluded that the effect of discreteness is small enough to
be neglected in their models [32].

On the other hand, Kitsunezaki [33] reported the success
of reproducing the viscous-finger-like branching pattern by
introducing the nonlinear diffusion term

V(D(x) Vx), (5)

with imposing a condition on the density-dependent diffu-
sion coefficient D(x) such that D(0)=0 for a hard substrate
(agar in which the cells are implanted). This condition is
essentially equivalent to introducing a threshold for diffusive
motion. In addition, Mimura et al. [34] proposed flexible RD
equations to reproduce the experimentally observed patterns.
In their sophisticated model, the reaction rates are designed
to depend on the concentration of x (active bacteria) and n
(nutrition). In particular, one of the rates [corresponding to
our k, in Eq. (4a)] is supposed to be virtually zero if both x
and n are larger than threshold values. This also sets a thresh-
old dynamics. Although these pioneering studies are impor-
tant, it is hard to comprehend what actually happens behind
the phenomena observed. We therefore attempt to study fur-
ther in our own way.

1. Augmentation of the RD equations (1)

To quantify the effect of threshold dynamics, we first de-
fine a threshold parameter ¢ as the concentration of compo-
nents. With this e, we define a quasidiscrete concentration of
X, denoted as x,, in such a way that

v, = {x (x=>2) ©6)

0 (x<e).

Similarly, we define n, for the component N. With x, and n,,
it is represented that the components whose concentrations
are below the threshold are not activated to react. More ex-
plicitly, Egs. (4a)—(4c) are modified as

0.
;): = kyx.n, — kox, + DxVx, (7a)
17
2 kyx.n, + DyVn, (7b)
at
Ipi
— =kyx,. e
Jt 2Xg ( )

We refer to these as the threshold RD equations. Note that no
threshold effect has been taken into account in the diffusion
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FIG. 3. (Color online) Snapshots of two-dimensional growth
patterns (the combined distribution of X and P,) for selected values
of Dy and & by using Egs. (7a)—(7c). Taken at (a) (Dy,¢)
=(0.005,107%), t=2300, (b) (Dyx,e)=(0.010,107%), r=1200, (c)
(Dy,&)=(0.005,1072), t+=4500, and (d) (Dy,&)=(0.010,1072), ¢
=2300. In these panels, the concentration at each point is depicted
as zero if it is below . Although clear branching webs appear, the
patterns still keep a spatial symmetry.

terms. Incidentally, the above modified RD equations are dif-
ferent from those used by Kessler er al. [19] and Golding et
al. [31] in that the threshold effects are consistently consid-
ered in all the reaction processes.

The patterns emerging from the above threshold RD equa-
tions, Eqgs. (7a)—(7c), are displayed in Fig. 3. They have been
obtained by varying the threshold value & and the diffusion
constant of X. The figures clearly show that the branching
patterns have certainly emerged although they are not very
akin to the patterns generated from CA (Fig. 1). With this
partial success, we next study how the threshold dynamics
has brought about the branching shapes.

2. Analysis: Mechanism of the branching
induced by threshold dynamics

To extract the essential mechanism that gives birth to the
branching patterns, we here study a very simple rectangular
system, on the upper edge of which X is distributed uni-
formly at t=0, while N is almost uniformly distributed in the
entire space (see Fig. 4.) Again Table II lists the system
parameters used but Az=0.5. The periodic boundary condi-
tion is imposed on the solutions along the vertical axis, while
the Neumann boundary condition is imposed along the hori-
zontal axis. We have observed the patterns growing, with
varying the threshold parameter & just as above with the
threshold RD equations.

Figure 4 is composed of four sets of the evolution pattern
with (a) €=0, (b) e=1072, (c) £=1072, and (d) e=1072. The
left subpanel for each & shows the distribution of X only,
whereas the right counterpart does the joint distribution of X
and P; as before. It is well observed that as the threshold
value & becomes larger, the clearer branching pattern
emerges: When ¢ is zero [panel (a)] or sufficiently small
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FIG. 4. (Color online) Snapshots of the distributions of X (left)
and the sum of X and P, (right) for selected &. (a) £=0.0, r=1000,
(b) £=107%, ¢=1300, (c) &=1073, +=2100, and (d) &=107"2, ¢
=4700. When ¢ is sufficiently large, the wave front of X becomes
rough and splits into several small pieces.

[panel (b)], the wave front of X keeps its shape to be almost
flat and thus the growth patterns left behind show almost
uniform distributions. On the other hand, the larger & [panels
(c) and (d)] leads the wave front to become rougher, resulting
in the clearer branching webs.

These snapshots in Fig. 4 have been taken at different
timings; (a) r=1000, (b) r=1300, (c) r=2100, and (d) ¢
=4700, indicating that the higher threshold value makes the
velocity of the wave front slower. To quantify the relation
between the wave-front velocity v, and &, we plot their re-
lations in Fig. 5. (The horizontal arrows in the figure indicate
the wave-front velocities of the corresponding Dy at £=0.)
As seen in the graph, v, decreases as € becomes larger, and
eventually it is nullified beyond a certain €. On the other
hand, most of the cells X can be found only in the front end
of the propagating wave, as the left subpanels of Fig. 4 in-
dicate. New X are produced in the thin region (a beltlike
zone) of the wave front, and they eventually change because
of the shortage of N, leaving P; behind. Thus, the higher
threshold & makes the autocatalytic reaction Eq. (la) less
efficient, and consequently, the resultant slower propagation
of the wave front makes the population of X even smaller
and the wave front thinner. This fact is clearly observed in
the left subpanels of Fig. 4. It is in this situation that discon-
nection of the belt of the wave front of the cells X takes place
here and there. In the areas where the concentration of X
becomes lower than the threshold, the proliferation reaction
Eq. (la) stops concomitantly, and after thus broken wave
fronts proceed, canal-like zones follow in which both X and

TABLE II. System parameters chosen for the reaction-diffusion
equations.

L 200 System size
Az 0.25 Spatial step
At 0.01 Time step
X0 1.0 Initial concentration of X
ng 0.5 Initial concentration of N
Dy 0.25 Diffusion constant of N
ky 1.0 Rate constant in Eq. (1a)
ky 0.1 Rate constant in Eq. (1b)
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FIG. 5. (Color online) Wave-front velocity v, for various e. The
arrows indicate the wave-front velocity at e=0. As & becomes
larger, v, decreases. (+) Dy=0.01, (X) Dy=0.05, and (¥*) Dy
=0.10.

P, are missing. It is obvious for the same reason that the
smaller Dy or the fewer amount of N should assist one in
creating the finer branching structure more clearly.

The above scenario is compatible with the fact that the
sophisticated RD equations previously proposed could repro-
duce well the branching patterns. To begin with, we note that
the threshold in x, should reduce the rate for X to be con-
verted to P;, and should prevent the wave front composed of
X from becoming thinner. On the contrary, if the “rate con-
stant” of X— P, is larger for the smaller x, the diminution of
the concentration of X in the wave front in the low x region
is accelerated and the branching phenomenon should become
more prominent. Indeed this mechanism has been explicitly
taken into account in the RD equations by Mimura et al.
[34]. Also, the lowering of the velocity of the wave front can
be realized by introducing a threshold into the diffusion of X
(recall Fig. 5). This may account for the success of reproduc-
ing the branching patterns in terms of the nonlinear diffusion
term as introduced by Kitsunezaki [33]. [See Eq. (5) and the
discussion below it.]

Thus it turns out that the threshold dynamics is one of
mechanisms responsible for producing the branching struc-
tures in the proliferation dynamics.

B. Local noise of continuous limit

Another critical difference between the CA and RD lies in
the treatment of determinicity; the RD equations, like other
well-posed initial value problems, are deterministic and the
inherent symmetries incorporated in an initial condition are
not broken in the time propagation. (Note that even the
propagation of a distribution function for diffusion process is
given deterministically.) On the other hand, the individual
steps in the CA are usually evolved in time by “tossing dice.”
Since the threshold dynamics and the stochasticity are physi-
cally independent, we study what will result by the stochas-
ticity alone without the effect of threshold dynamics.

To investigate the effect of stochasticity, we introduce
“noise” into the standard RD equations (but not threshold) in
such a way that

ox

=kyxn —kyx + DyVx + 9, &,(z,1) —

ot 7mé(z,1), (8a)
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J
él:—klx”"'DNVz”— mé(z.1), (8b)

ap
&—[‘ = kox + &5(2,1), (8¢)

where &,(z,1) and &,(z,1) are Gaussian noises independently
generated at a space-time point (z,7), with »; and 7, being
their associated scaling constant, respectively. The system to
which we applied these equations is the same as that of the
incubation of a spotlike seed. The conditions for this part of
the calculations are ny=0.5 and Dyx=0.010, which are the
same as those of the panels (b) and (d) in Fig. 3. The con-
stants to scale the noise are set to 7, =,=107>. The colonies
generated by this modification converge to a very simple and
clear pattern. It has been observed that X is eventually extin-
guished almost everywhere, and many small colonies com-
posed mostly of P, are left behind (not shown graphically).
This conclusion is generic even for the case of small noising
parameters 7; and 7, and is quite understandable, since the
noise in Eq. (8a) results in implanting many seeds of the
cells X at many places in a random fashion. Since there is no
threshold for them to react with N (¢=0 here), some of them
are evolved in time to larger colonies. Then the proliferating
cells X eventually consume almost entire nutrition N (recall
that X becomes doubled with a single N) and the process
ends with X— P,. The resultant scattering colonies are of
course an artifact.

Thus, it turns out that the introduction of noise should be
performed within the context of threshold dynamics, even if
they are mathematically independent.

C. Local noise with the threshold: Breaking symmetry
1. Augmentation of the RD equations (2)

We accordingly introduce the noise terms not to the origi-
nal RD equations but the threshold RD equations, Egs.
(7a)—(7c). They are

0.
5_); =kixgng — kyxg + vazx + 1,16(2,0) — mé(z,1),
(9a)
on 5
E:_kl'xsne-'_DNV n-— 771§I(Z,f)’ (9b)
dp
7; = kzxs + ﬂzgz(z,t), (9C)

where &,(z,7) and &,(z,r) are again the Gaussian white
noises. We refer to these as the locally fluctuating RD equa-
tions.

The intensity level of the noises should also be considered
so as to be consistent with the threshold dynamics. In a mac-
roscopic description (based on the concentration), k;xn, rep-
resents the mean production rate. On the other hand, the
mean production rate with a microscopic description (based
on the number of particles) should be represented as ¢,x7,

PHYSICAL REVIEW E 79, 026202 (2009)

where c; is a probability rate for production, and X and 7 are

the number of particles of X and N in the unit volume ().

Therefore these two quantities should be correlated with each

other in the following relation:

C lfﬁ

—_—, 10
Q (10)

kyxgn, =

and it is estimated as X=x,{) and 7=n,). Then, the ampli-
tude of the fluctuation can be microscopicallﬂygtimated at
the square root of the mean production rate, \c X7, provided
that this reaction dynamics is regarded as the Poisson pro-
cess. Thus the amplitude of the fluctuation with the macro-
scopic description #; is written in as

e & [kyxgng —————
m= (1) = IQ :\’kl'xsnss’ (11)

where e=1/(). In this expression, 7, includes the threshold
value & explicitly, indicating that the fluctuation becomes
larger as the threshold is higher. In a similar manner, we can
estimate the amplitude of the fluctuation in the reaction (1b)
as

7= Vkox,e. (12)

Note, however, that this noise expression may become incon-
sistent with the idea of the Gaussian random process, which
generally assumes the presence of a sufficiently large number
of particles [35]. On the other hand, as shown above, a large
threshold parameter € tends to reduce the population of X.
Nevertheless, we test the locally fluctuating RD equations in
what follows.

2. Symmetry breaking induced by the local fluctuation

We recall in Fig. 3 that the threshold for occurrence of the
reactions introduced into the RD equations could generate
the patterns of branching structures. However, they retain
high spatial symmetry, which is not easily broken within its
own RD scheme. Obviously, the small fluctuation in the ini-
tial distribution of N is not sufficient to break the symmetry
significantly, unless the RD solution is unstable and sur-
rounded by symmetry breaking solutions. (Kitsunezaki used
a random lattice in numerically solving his RD equations
[33].)

Figure 6 shows selected snapshots of the colony pattern
resulting from the locally fluctuating RD equations, Egs.
(9a)—(9¢), as a function of the threshold value of & and the
diffusion constant Dy. Comparing it with Fig. 3, we imme-
diately notice a large difference: The inner structure of the
patterns is now more complicated and far more resembles the
colony patterns generated from CA. Thus, the patterns show
clear branching webs and the asymmetric morphology.

To quantify the effect of noise on the geometry of result-
ant colonies, we calculate the fractal dimension d, [Fig. 7(a)]
and the front velocity of the patterns [Fig. 7(b)], varying &
and Dy. d; approaches the space dimension d=2 as & ap-
proaches zero, and the velocity decreases as e increases or
Dy decreases. These figures show almost the same behavior
as those of CA. A comparative inspection of Figs. 7 and 2
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FIG. 6. (Color online) Snapshots of two-dimensional growth
patterns (the combined distribution of X and P,) for different Dy
and & obtained with Egs. (9a)-(9c). Taken at (a) (Dy,e)
=(0.005,107%), ¢=2100, (b) (Dyx,e)=(0.010,107%), t=1200, (c)
(Dy,e)=(0.005,1072), t=3800, and (d) (Dy,&)=(0.010,1072), ¢
=2000. The growth patterns show not only the clear branching
structures but also the spatially asymmetric morphology as ob-
served in the patterns generated from CA.

shows that increasing € in the locally fluctuating RD equa-
tions corresponds to decreasing N, in the CA method. This
can be understood as follows. The presence of a threshold as
high as e practically discretizes the amount of N necessary
for the reaction, and therefore N is effectively measured in
units of . Thus, the higher & applied to RD as a threshold
should make the number count of N smaller for a given
initial concentration of N. This is effectively equivalent to
reducing N, used in the CA.

V. CONCLUDING REMARKS

We have identified the essential origins that make the ma-
jor differences between the CA and RD, which are also re-
sponsible for creating such subtle and complicated structures
in proliferation dynamics as the bacterial colony. They are as
follows: (i) The threshold effect is necessary for the branch-
ing webs to be formed. (ii) Stochastic processes introduced
by the internal noise (fluctuation) make the colony patterns

0.25 T

20 % %+ (a) (b)
X 3 0204 4 1
] +
19 X I B3 0.15% X + i
518 43 x +
= %} Dolor X 1
) X _I_
L7 F Dy=0.010—— 1 0.05 F Dy=0.010—— x¥
L6 | Dx70-005n3¢< X . Dy=0.0052¢ X
107 100 105 104 103 102 107 10 10° 104 103 102
€ €

FIG. 7. (Color online) (a) Fractal dimension d for selected val-
ues of & and Dy. d; approaches the space dimension d=2 as &
approaches zero. (b) The front velocity of the patterns for different
e and Dy. The velocity decreases, as € increases or Dy decreases.
(+) Dx=0.010. (X) Dx=0.005.
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asymmetric and decrease the fractal dimension by assisting
one in creating more branching webs. In this way, the nu-
merically generated colony attains more realistic forms.
Without these factors, the standard RD equations give the
colony only a round disk. On the other hand, these physical
factors are naturally implemented in the CA. In other words,
any system that can be reduced to the type of dynamics of
Egs. (1a) and (1b) with the threshold dynamics and stochas-
tic fluctuation may produce the patterns of Fig. 1.

In the above analyses, we have suggested a systematic
method to improve the reaction-diffusion equations so as to
include threshold dynamics with local fluctuation. These
modifications on the RD extend its application field to a
wider range, and would be practically useful in simulating
realistic dynamics, in which stochasticity and/or switching
(firing) of the onset are crucial.

On the other hand, the roles of stochasticity (vs determi-
nicity) and discreteness (vs continuity) depend strongly on
the system sizes under study. For a rather large scale system
consisting of many microscopic particles, the system may be
well approximated with continuous variables and the deter-
ministic approach should be accurate. Conversely, as the
constituent elements like our cells X become larger, and as
the discreteness of the elements is apparent, such modifica-
tions as we proposed should be vital for the RD approach.
For the same reason, a naive application of the CA to a very
microscopic and smooth dynamics may lead to unphysical
solutions.

We have shown that the comparative study between the
CA and RD is quite useful to extract the essential factors
dominating pattern formation. Yet, there is a case where nei-
ther stochasticity nor discreteness of the variables is the ori-
gin of the difference in patterns given by CA and RD. We
will report such a dynamics in our future paper [22].
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APPENDIX: ALGORITHM FOR REACTION PROCESS

Taking X as an example, we here introduce two charac-
teristic features of the CA rules that are difficult for the or-
dinary rate equation method to describe: Consider the de-
composition reaction of X in Eq. (1b). Basically, its rate
should depend only on the number of X at each node. How-
ever, since X can be involved in the other reaction Eq. (1a) at
the same time, the decomposition reaction cannot be treated
independently as though no other reactions exist. Thus, the
decomposition reaction of X effectively depends on the local
circumstances.

In this Appendix, we describe the CA rules in great detail.
In what follows, X; denotes the number of X particles at a
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node z before a reaction AX; (AX®) indicates the increment
(decrement) of X at z during the reaction, whereas X} does
the number of X at z after the reaction, satisfying X;=X;
+AX: - AX:. For the other components, the similar notations
are used.

1. Treatment of push-out effect

When a single X particle splits into two, one of them can
be stochastically pushed out to a neighboring node or re-
mains at the original point. We here define s as a probability
for the X particle to stay at the original node (0<s<1). And,
since the particle is pushed out to isotropic directions, the
probability to be pushed out to one of the nearest neighbor
nodes is % In this paper, we set s=0.99 throughout. A
random number R in [0, 1) is used to determine a node to
which one of two split X particles should move. We denote
these nodes as S.

PHYSICAL REVIEW E 79, 026202 (2009)

2. CA rules

(1) Perform step 2 to step 4 for all the nodes.
(2) Repeat the next steps X; times at a node z.
(3) Go to the following procedure A:

(A) X+N—2X [Eq. (1a)].

(a) If N;—=AN°#0, then perform the next substeps
(b) and (c). Otherwise, go to step 4 [Eq. (1a) does not occur].

(b) Generate a random number R in [0,1).

(c) If R<r, then add unity to AXE and AN?, respec-
tively, and then go back to step 2 [Eq. (la) occurs]. Other-
wise, go to step 4 [Eq. (1a) does not occur].

(4) Go to the following procedure B.
(B) X— P, [Eq. (1b)].

(a) Generate a random number R in [0,1).

(b) If R<r,, then add unity to AX* and AP“L, respec-
tively [Eq. (1b) occurs].

(c) Go back to step 2.

(5) After the above procedures are completed, calculate
}, N}, and P?/ for all the nodes.

[1] C. Sachs, M. Hildebrand, S. Volkening, J. Wintterlin, and G.
Ertl, Science 293, 1635 (2001); M. Nagasaka, H. Kondoh, and
T. Ohta, J. Chem. Phys. 122, 204704 (2005).

[2]J. D. Murray, Sci. Am. 258, 80 (1988); S. Kondo and R. Asai,
Nature (London) 376, 765 (1995).

[3] R. Kapral and K. Showalter, Chemical Waves and Patterns
(Kluwer, Dordrecht, 1995).

[4] A. M. Turing, Philos. Trans. R. Soc. London, Ser. B 237, 37
(1952).

[5] A. Gierer and H. Meinhardt, Kybernetik 12, 30 (1972).

[6] J. E. Pearson, Science 261, 189 (1993).

[7] K. J. Lee, W. D. McCormick, J. E. Pearson, and H. L. Swin-
ney, Nature (London) 369, 215 (1994).

[8] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence
(Springer-Verlag, Berlin, 1984/ Dover Edition, 2003).

[9] R. J. Field, E. Kéros, and R. M. Noyes, J. Am. Chem. Soc. 94,
8649 (1972).

[10] M. Ohgiwari, M. Matsushita, and T. Matsuyama, J. Phys. Soc.
Jpn. 61, 816 (1992).

[11]E. O. Budrene and H. C. Berg, Nature (London) 349, 630
(1991).

[12] I. Cohen, A. Czirok, and E. Ben-Jacob, Physica A 233, 678
(1996).

[13] E. Ben-Jacob, 1. Cohen, and H. Levine, Adv. Phys. 49, 395
(2000).

[14] B. Chopard and M. Droz, Cellular Automata Modeling of
Physical Systems (Cambridge University Press, Cambridge,
England, 1998).

[15] T. Shinbrot and F. J. Muzzio, Nature (London) 410, 251
(2001).

[16] B. Lindner, J. Garcia-Ojalvo, A. Neiman, and L. Schimansky-
Geier, Phys. Rep. 392, 321 (2004).

[17] J. Garcia-Ojalvo and J. M. Sancho, Noise in Spatially Ex-
tended Systems (Springer, New York, 1999).

[18] C. B. Muratov, E. Vanden-Eijnden, and E. Weinan, Proc. Natl.

Acad. Sci. U.S.A. 104, 702 (2007).

[19] D. A. Kessler and H. Levine, Nature (London) 394, 556
(1998).

[20] Y. Togashi and K. Kaneko, Phys. Rev. E 70, 020901(R)
(2004); Y. Togashi and K. Kaneko, Physica D 205, 87 (2005).

[21] This simple proliferation model has been considered as the
simplest member of a set of dynamical systems that is of
roughly hierarchical structure. Adding new factors (function-
ing) one by one, we examine what kind of phenomena may
appear in a hierarchical manner in thus enlarged systems. By
doing so, we attempt to identify the essential factors that can
lead to the complexity in pattern formation processes. We have
constructed the other two dynamical models; one model sys-
tem contains an inhibition (repression) process, and the other is
enriched with an activation process. The main aim is to com-
prehend how the pattern formations emerge in an “axiomatic”
manner of system construction. Indeed, a series of thus con-
structed models is found to generate many interesting patterns,
which will be reported elsewhere [22].

[22] K. Odagiri and K. Takatsuka (unpublished).

[23] Actually, the CA method used in this paper is similar to a
multiparticle model [14], which lies in between the strict CA
(or the lattice gas automata) and the lattice Boltzmann method.
Nonetheless, we call our used method a CA, because we want
to emphasize an advantage of the CA that can handle what is
not necessarily reduced to differential equations.

[24] L. G. Morelli and D. H. Zanette, Phys. Rev. E 58, R8 (1998);
P. Grassberger, ibid. 59, R2520 (1999).

[25] R. Danielak, A. Perera, M. Moreau, M. Frankowicz, and R.
Kapral, Physica A 229, 428 (1996).

[26] S. Yaguma, K. Odagiri, and K. Takatsuka, Physica D 197, 34
(2004).

[27] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery, Numerical Recipes in C**, 2nd ed. (Cambridge Univer-
sity Press, Cambridge, England, 2002).

026202-9



KENTA ODAGIRI AND KAZUO TAKATSUKA

[28] J. Wakita, H. Shimada, H. Itoh, T. Matsuyama, and M. Mat-
sushita, J. Phys. Soc. Jpn. 70, 911 (2001).

[29] M. Matsushita (private communication).

[30] T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400
(1981).

[31] I. Golding, Y. Kozlovsky, I. Cohen, and E. Ben-Jacob, Physica
A 260, 510 (1998).

PHYSICAL REVIEW E 79, 026202 (2009)

[32] I. Cohen, I. Golding, Y. Kozlovsky, and E. Ben-Jacob, Fractals
7, 235 (1999); E. Ben-Jacob and H. Levine, J. R. Soc., Inter-
face 3, 197 (2006).

[33] S. Kitsunezaki, J. Phys. Soc. Jpn. 66, 1544 (1997).

[34] M. Mimura, H. Sakaguchi, and M. Matsushita, Physica A 282,
283 (2000).

[35] D. T. Gillespie, J. Chem. Phys. 113, 297 (2000).

026202-10



